Questions & Answers

Question

Answers

\[1kg{\text{ }} = \_\_\_\_\_\_\_\_\_dag{\text{ }}\].

Answer

Verified

129.3k+ views

According to the question, we need to find the relation between kilogram (kg) and dekagram (dag).

Now as per the conversion table of mass we know:

\[\begin{array}{*{20}{l}}

{10{\text{ }}milligram{\text{ }} = {\text{ }}1{\text{ }}centigram} \\

{10{\text{ }}centigram{\text{ }} = {\text{ }}1{\text{ }}decigram} \\

{10{\text{ }}decigram{\text{ }} = {\text{ }}1{\text{ gram}}} \\

{10{\text{ gram }} = {\text{ }}1{\text{ }}dekagram} \\

{10{\text{ }}dekagram{\text{ }} = {\text{ }}1{\text{ }}hectogram} \\

{10{\text{ }}hectogram{\text{ }} = {\text{ }}1{\text{ }}kilogram}

\end{array}\]

So, from this table clearly:

\[10{\text{ }}dekagram{\text{ }} = {\text{ }}1{\text{ hectogram}}\]

And, $10hectogram = 1kilogram$

So, we can say that:

If, \[10{\text{ }}dekagram{\text{ }} = {\text{ }}1{\text{ hectogram}}\]

Then, we can rewrite it as \[1hectogram = 10dekagram\]

Now, if \[1hectogram = 10dekagram\]

Then, we can say that $10hectogram = 100dekagram$

Also, $10hectogram = 1kilogram$

So we can conclude that $1kilogram = 100dekagram$

That is, 1 kg = ….100….dag.

Hence, we will fill the blank with the multiplying factor of 100.